Energy

24 Items

rendering of Carbon Engineering’s air capture design

Courtesy of Carbon Engineering

Journal Article - Joule

A Process for Capturing CO2 from the Atmosphere

    Authors:
  • Geoffrey Holmes
  • David St. Angelo
  • Kenton Heidel
| 2018

The authors describe a process for capturing CO2 from the atmosphere in an industrial plant. The design captures ∼1 Mt-CO2/year in a continuous process using an aqueous KOH sorbent coupled to a calcium caustic recovery loop. They describe the design rationale, summarize performance of the major unit operations, and provide a capital cost breakdown developed with an independent consulting engineering firm. They report results from a pilot plant that provides data on performance of the major unit operations.

teaser image

Journal Article - Climatic Change

Expert Views — and Disagreements — About the Potential of Energy Technology R&D

| June 2016

In order to make R&D funding decisions to meet particular goals, such as mitigating climate change or improving energy security, or to estimate the social returns to R&D, policy makers need to combine the information provided in this study on cost reduction potentials with an analysis of the macroeconomic implications of these technological changes. The authors conclude with recommendations for future directions on energy expert elicitations.

The Smoky Hills Wind Farm as seen from Interstate 70 in Kansas, 2 November 2009.

Creative Commons

Journal Article - Energy & Environmental Science

How Much Bulk Energy Storage is Needed to Decarbonize Electricity?

| 2015

High cost and technical immaturity of bulk (multi-hour) electricity storage (BES) systems are often cited as major hurdles to increasing the penetration of intermittent renewables. The authors use a simple model to assess the economics of BES under carbon emissions constraints.

Journal Article - Reference Module in Earth Systems and Environmental Sciences

Technology Innovation and Energy

Energy technology innovation is the key to driving the technological changes that are necessary to meet the challenge of mitigating energy-related greenhouse gas emissions to avoid 'dangerous climate change.' Success in innovation requires the enhancement of public investment in the innovation process, the creation of markets for low-carbon technologies through stronger climate policies, and a continued focus on energy access and equity.

Sept. 1, 2010: A coal-fired power plant's emissions are seen during the night in Changchun, China. China spent $34.6 billion on clean energy in 2009.

AP Photo

Journal Article - International Journal of Greenhouse Gas Control

Preparing to Ramp up Large-scale CCS Demonstrations: An Engineering-economic Assessment of CO2 Pipeline Transportation in China

| July 2011

An integrated carbon dioxide (CO2) capture and storage (CCS) system requires safe and cost-efficient solutions for transportation of the CO2 from the capturing facility to the location of storage. While growing efforts in China are underway to understand CO2 capture and storage, comparatively less attention has been paid to CO2 transportation issues. Also, to the best of our knowledge, there are no publicly available China-specific cost models for CO2 pipeline transportation that have been published in peer-reviewed journals. This paper has been developed to determine a first-order estimate of China's cost of onshore CO2 pipeline transportation.

A man stands beside his house as smoke is seen billowing from a thermoelectric power plant in Changchun, China on April 12, 2010. China still faces challenges in the transition to a low-carbon economy and needs integrated solution systems.

AP Photo

Journal Article - China Environment Series

Advancing Carbon Capture and Sequestration in China: A Global Learning Laboratory

| 2010/2011

China's dependency on coal fuels the country's phenomenal economic growth but at a major cost to the country's air and water quality, ultimately threatening human health and the country's continued economic growth. The Chinese government's efforts to put China onto a cleaner, low carbon development path have been substantial; however China's pollution and greenhouse gas emissions continue to grow. In an attempt to develop its own advanced coal generation technologies to improve the country's air quality and energy efficiency, the Chinese government is investing heavily in gasification and other technologies that can be employed in carbon capture and sequestration (CCS) applications. This investment has turned China into a global laboratory for CCS pilot projects, attracting foreign governments, multilateral institutions, nongovernmental organizations, and business partners.

A passerby looks at a coal power plant chimney between two office buildings at the Central Business District in Beijing, Feb. 6, 2009. China, which is heavily dependent on coal to fuel its growing economy, rivals the U.S. in GHG emissions.

AP Photo

Journal Article - Energy Policy

Catalyzing Strategic Transformation to a Low-carbon Economy: A CCS Roadmap for China

| January 2010

China now faces the three hard truths of thirsting for more oil, relying heavily on coal, and ranking first in global carbon dioxide (CO2) emissions. Given these truths, two key questions must be addressed to develop a low-carbon economy: how to use coal in a carbon-constrained future? How to increase domestic oil supply to enhance energy security? Carbon Capture and Storage (CCS) may be a technological solution that can deal with today's energy and environmental needs while enabling China to move closer to a low-carbon energy future. This paper has been developed to propose a possible CCS roadmap for China.

Jerusalem Mayor Nir Barkat, left, and Israeli-U.S. entrepreneur, Shai Agassi, founder a project developing electric cars and a network of charging points, next to an electric car and its charging station in Jerusalem, Oct. 22, 2009.

AP Photo

Journal Article - Innovations

Energy for Change: Introduction to the Special Issue on Energy & Climate Change

| Fall 2009

"Without energy, there is no economy. Without climate, there is no environment. Without economy and environment, there is no material well-being, no civil society, no personal or national security. The overriding problem associated with these realities, of course, is that the world has long been getting most of the energy its economies need from fossil fuels whose emissions are imperiling the climate that its environment needs."

A CO2 injection well in the SACROC oil field in West Texas.

Photo by Jeffrey Bielicki

Journal Article - International Regional Science Review

Optimal Spatial Deployment of Carbon Dioxide Capture and Storage Given a Price on Carbon Dioxide

| Forthcoming

Carbon dioxide capture and storage (CCS) links together technologies that separate carbon dioxide (CO2) from fixed point source emissions and transport it by pipeline to geologic reservoirs into which it is injected underground for long-term containment. Previously, models have been developed to minimize the cost of a CCS infrastructure network that captures a given amount of CO2. The CCS process can be costly, however, and large-scale implementation by industry will require government regulations and economic incentives. The incentives can price CO2 emissions, through a tax or a cap-and-trade system, or involve the purchase of CO2 by oil companies for enhanced oil recovery from depleted oil fields.

Trucks are seen transporting coal at the Shaer Lake coal field in Shanshan county, Turpan, northwest China's Xinjiang Uygur Autonomous Region, 13 Feb. 2009.

AP Photo

Journal Article - Energy Procedia

Driving Carbon Capture and Storage Forward in China

| February 2009

Carbon Capture and Storage (CCS), as an option in the portfolio of mitigation actions to combat climate change, is expected to have far-reaching implications for China. This paper (1) explores the strategic significance of CCS for China by making an extreme scenario analysis of Chinese power sector in 2030; (2) provides an overview of the recent CCS activities in China; and (3) identifies the major challenges with respect to CCS development in China and put forwards immediate strategies.